Evaluation

3DGS

Performance on Mip-NeRF 360 Captures (Averaged Over 7 Scenes)

PSNR

SSIM

LPIPS

Train Mem

Train Time

inria-7k

27.23

0.829

0.204

7.7 GB

6m05s

gsplat-7k

27.21

0.831

0.202

4.3GB

5m35s

inria-30k

28.95

0.870

0.138

9.0 GB

37m13s

gsplat-30k (1 GPU)

28.95

0.870

0.135

5.7 GB

35m49s

gsplat-30k (4 GPUs)

28.91

0.871

0.135

2.0 GB

11m28s

This repo comes with a standalone script (examples/simple_trainer.py default) that reproduces the Gaussian Splatting with exactly the same performance on PSNR, SSIM, LPIPS, and converged number of Gaussians. Powered by gsplat’s efficient CUDA implementation, the training takes up to 4x less GPU memory with up to 15% less time to finish than the official implementation.

Feature Ablation

Evaluation of features provided in gsplat on Mip-NeRF (averaged over 7 scenes). We ablate gsplat with default settings, with absgrad and mcmc densification strategies, and antialiased mode. Absgrad method uses –grow_grad2d 0.0006 config. These results are obtained with an A100.

PSNR

SSIM

LPIPS

Num GSs

Mem (GB)

Time (min)

gsplat (default settings)

29.00

0.87

0.14

3237318

5.62

19.39

absgrad

29.11

0.88

0.12

2465986

4.40

18.10

antialiased

29.03

0.87

0.14

3377807

5.87

19.52

mcmc (1 mill)

29.18

0.87

0.14

1000000

1.98

15.42

mcmc (2 mill)

29.53

0.88

0.13

2000000

3.43

21.79

mcmc (3 mill)

29.65

0.89

0.12

3000000

4.99

27.63

absgrad & antialiased

29.14

0.88

0.13

2563156

4.57

18.43

mcmc & antialiased

29.23

0.87

0.14

1000000

2.00

15.75

Trains Faster with Less GPU Memory

Train Mem (GB)

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-7k

7.86

7.61

6.47

8.99

8.08

7.88

7.23

gsplat-7k

6.10

2.20

1.93

7.57

2.89

2.04

6.25

inria-30k

11.56

7.70

6.73

11.04

8.33

8.50

8.82

gsplat-30k

10.58

2.29

2.23

9.88

3.17

2.79

8.10

Train Time (s)

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-7k

336

340

364

427

436

336

321

gsplat-7k

319

299

318

415

389

301

304

inria-30k

2980

1552

1725

3092

2144

1773

2366

gsplat-30k

2964

1422

1621

3013

2020

1708

2299

Reproduced Metrics

PSNR

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-7k

23.59

29.75

27.21

26.13

29.02

29.26

25.64

gsplat-7k

23.71

29.66

27.14

26.30

28.86

29.21

25.62

inria-30k

25.19

32.21

29.02

27.29

31.07

31.31

26.56

gsplat-30k

25.22

32.06

29.02

27.32

31.16

31.36

26.53

SSIM

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-7k

0.662

0.921

0.877

0.824

0.902

0.893

0.721

gsplat-7k

0.668

0.922

0.878

0.833

0.902

0.893

0.720

inria-30k

0.763

0.941

0.906

0.863

0.925

0.918

0.771

gsplat-30k

0.764

0.941

0.907

0.865

0.926

0.918

0.768

LPIPS

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-7k

0.329

0.164

0.207

0.130

0.125

0.219

0.254

gsplat-7k

0.324

0.162

0.206

0.123

0.127

0.217

0.253

inria-30k

0.177

0.133

0.157

0.078

0.096

0.168

0.155

gsplat-30k

0.172

0.132

0.154

0.075

0.094

0.164

0.153

Number of GSs

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-7k

3.57M

1.16M

1.01M

4.33M

1.63M

1.11M

3.75M

gsplat-7k

3.62M

1.17M

1.02M

4.48M

1.63M

1.11M

3.71M

inria-30k

6.06M

1.24M

1.19M

5.71M

1.78M

1.55M

4.82M

gsplat-30k

6.26M

1.25M

1.21M

5.84M

1.79M

1.59M

4.81M

Note: Evaluations are conducted on a NVIDIA TITAN RTX GPU. The LPIPS metric is evaluated using from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity, which is different from what’s reported in the original paper that uses from lpipsPyTorch import lpips.

The evaluation of gsplat-X can be reproduced with the command cd examples; bash benchmarks/basic.sh within the gsplat repo (commit 6acdce4).

The evaluation of inria-X can be reproduced with our forked wersion of the official implementation at here, with the command python full_eval_m360.py (commit 36546ce).

2DGS

No Regularization

PSNR

SSIM

LPIPS

Train Mem

Train Time

inria-30k

28.73

0.860

0.148

3.73 GB

22m16s

gsplat-30k

28.76

0.867

0.145

3.70 GB

15m44s

With Normal Consistency and Distortion Regularization

PSNR

SSIM

LPIPS

Train Mem

Train Time

inria-30k

28.05

0.848

0.186

3.76 GB

22m06s

gsplat-30k

27.80

0.842

0.169

3.61 GB

16m44s

Runtime and GPU Memory

Train Mem (GB)

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-30k

6.74

2.27

2.06

4.79

2.25

2.40

5.58

gsplat-30k

6.89

2.19

1.93

4.48

2.14

2.30

6.00

Train Time (s)

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-30k

1463

1237

1318

1298

1422

1314

1252

gsplat-30k

1231

788

803

985

828

789

1057

Reproduced Metrics

PSNR

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-30k

24.92

31.87

28.78

26.88

31.08

31.21

26.36

gsplat-30k

24.97

31.94

28.76

26.95

31.08

31.27

26.37

SSIM

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-30k

0.741

0.937

0.899

0.847

0.921

0.914

0.760

gsplat-30k

0.764

0.937

0.899

0.849

0.921

0.915

0.761

LPIPS

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-30k

0.199

0.136

0.164

0.093

0.101

0.172

0.168

gsplat-30k

0.189

0.134

0.162

0.091

0.101

0.169

0.166

Number of GSs

Bicycle

Bonsai

Counter

Garden

Kitchen

Room

Stump

inria-30k

3.97M

0.91M

0.72M

2.79M

0.85M

1.01M

3.27M

gsplat-30k

3.88M

0.92M

0.73M

2.49M

0.87M

1.03M

3.40M

Note: Evaulations for 2DGS are conducted on a NVIDIA RTX 4090 GPU. The LPIPS metric is evaluated using from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity, which is different from what’s reported in the original paper that uses from lpipsPyTorch import lpips.

The evaluation of gsplat-X can be reproduced with the command cd examples; bash benchmarks/basic_2dgs.sh within the gsplat repo (commit 48abf70).

The evaluation of inria-X can be reproduced with our forked wersion of the official implementation at here; you need to change the --model_type 2dgs to --model_type 2dgs-inria in benchmars/basic_2dgs and run command cd examples; bash benchmarks/basic_2dgs.sh (commit 28c928a).